I B.Tech - I Semester - Regular / Supplementary Examinations November 2017

DISCRETE MATHEMATICS
 (INFORMATION TECHNOLOGY)

Duration: 3 hours
Max. Marks: 70
PART - A

Answer all the questions. All questions carry equal marks $11 \times 2=22 \mathrm{M}$
1.
a) Check whether $\mathrm{PV}[\sim(\mathrm{P} \wedge \mathrm{Q})]$ is Tautology.
b) Prove that $(\mathrm{P} \rightarrow \sim \mathrm{Q}) \Leftrightarrow(\mathrm{Q} \rightarrow \sim \mathrm{P})$.
c) Symbolize the statement "There exists a positive integer that is even".
d) Write down the negative of "All even numbers are multiples of 4".
e) Show that the complement of an element of a distributive lattice is unique.
f) Draw the diagram of the graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ where $\mathrm{V}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}, \mathrm{E}=\{(\mathrm{A}, \mathrm{B}),(\mathrm{A}, \mathrm{C}),(\mathrm{A}, \mathrm{D}),(\mathrm{C}, \mathrm{D})\}$.
g) How many vertices and how many edges are there in the complete bipartite graph $K_{7,11}$.
h) Find the number of permutations of letter of the word MISSISSIPI.
i) A woman has 11 close relatives. In how many ways can she invite 5 of them to a dinner.
j) Find the generating function of the sequence $0,1,-2,3$, $-4, \ldots \ldots \ldots \ldots \ldots . . .$.
k) Solve the recurrence relation $a_{n}+a_{n-1}-a_{n-2}=0$ for $n \geq 2$ given that $a_{0}=-1, a_{1}=8$.
PART - B

Answer any THREE questions. All questions carry equal marks.

$$
3 \times 16=48 \mathrm{M}
$$

2.a) Obtain the principal disjunctive normal form of ($\sim \mathrm{P}) \mathrm{VQ}$. 8 M
b) Prove that $\left[P V Q V\left(\sim P_{\wedge} \sim Q_{\wedge} R\right)\right] \Leftrightarrow(P V Q V R)$.

8 M
3.a) Test whether the following is a valid argument: If Sachin gets century, then he gets free car. Sachin gets free car.
b) Let $A=\{1,2,3,4,6\}$ and ' R ' is a relation on ' A ' defined by $a R b$ if and only if ' a ' is a multiple of ' b '. Represent the relation R as a matrix and draw its digraph.
4.a) Show that the following graphs are Isomorphic.

b) Find the chromatic number of the following graph.

5.a) In how many ways can 7 women and 3 men be arranged in a row if 3 men must always stand together?

8 M
b) Prove the following identities:
i) $C(n+1, r)=C(n . r-1)$
ii) $\mathrm{C}(\mathrm{m}+\mathrm{n}, 2)=\mathrm{C}(\mathrm{m}, 2)+\mathrm{C}(\mathrm{n}, 2)+\mathrm{mn}$
6. Solve the recurrence relation by using characteristic roots

$$
\begin{aligned}
& a_{n}+4 a_{n-1}+4 a_{n-2}=8 \text { for } n \geq 2 \text { given that } a_{0}=1 \text { and } \\
& a_{1}=2 .
\end{aligned}
$$

